Bennett, Alpert & Goldstein's S 1954

For two coders only. Assumes that all categories are equally likely, i.e., the coders choose a category at random from a uniform distribution. Also known as C, κ n. G. and RE.

Scott's π

1955

Also for two coders. Within each category, the distribution over the two coders is uniform. But the categories are not equally likely.

Krippendorff's α

1967

First referenced in 1970 and then in his content analysis textbook in 1990. "alpha" ~= more general form of all other agreement metrics (see Wikipedia).

Fleiss' k

1971

Generalization of Scott's π (NOT Cohen's κ) to more than two coders. Called multi-π in A&P

1980

Davies & Fleiss' ĸ

1982

Generalization of Cohen's κ to more than two coders.
Called multi-κ in A&P

Cohen's K

1960

1960

Also for two coders only. Different distribution for each coder within each category.

1970

Siegel & Castellan's K

1988

1990

This is, in effect, Fleiss' κ but called K.

2000

Carletta suggests k for use in CL

1996

Used Siegel & Castellan's K for discourse segmentation but mistakenly calls it "kappa" (κ).

Barbara Di Eugenio: Skew is bad

2000

Showed that skewed item distributions can affect K (mistakenly called κ in CL)

Di Eugenio & Glass: Κ != κ

2004

The original κ (which is what K is mistakenly called in CL) has very different bias assumptions.

Craggs & McGee Wood argue against κ 2005

Following (Krippendorff, 2004a,b), they claim that κ and κ -like measures (K,S, π) are inappropriate for measuring agreement in CL.

Passonneau et al. argue for α

2010

2006

Claim that Krippendorff's α is better for CL tasks that do not involve nominal or disjoint categories e.g., word-sense tagging and summarization.

2020

Year