Decoding in SMT

Nitin Madnani
February 8, 2006
The Decoding Problem

• Search

• Inputs:
 • Input string
 • Bunch of statistical models
 • A function to assign score to any translation

• Output:
 • Best scoring translation
Mathematically ...

\[e = \arg \max_{\hat{e}} S(\hat{e}, f) \]
Mathematically ...

\[e = \arg \max_{\hat{e}} S(\hat{e}, f) \]

Score
(models, candidate, input string)
Mathematically ...

\[e = \arg \max_{\hat{e}} S(\hat{e}, f) \]
Mathematically ...

$$e = \text{arg max}_{\hat{e}} S(\hat{e}, f)$$

Search operation

e = search space (all possible translations)

Score (models, candidate, input string)
Mathematically...

\[e = \arg \max \hat{e} \quad S(\hat{e}, f) \]

"Best" Translation

Search operation

Score
(models, candidate, input string)

search space
(all possible translations)
Mathematically ...

Mathematically, the "Best" Translation is determined by the following equation:

\[e = \arg \max_{\hat{e}} S(\hat{e}, f) \]

where \(S(\hat{e}, f) \) is the Score function over the search space of all possible translations.

Search operation

The search operation involves evaluating the Score function for each candidate translation in the search space.

Score

The Score is calculated as a product of probabilities or a sum of weighted models:

- **Models =** \(P(e), P(a|f, e); \) Score = \(P(e) \times P(a|f, e) \)
- **Models =** \(P(e), P(f|e), P(e|f), P(a|f, e), P(e|f) \) etc; Score = \(\exp(\sum w_m m_n) \)

Examples:

- Models = \(P(e), P(a|f, e); \) Score = \(P(e) \times P(a|f, e) \)
- Models = \(P(e), P(f|e), P(e|f), P(a|f, e), P(e|f) \) etc; Score = \(\exp(\sum w_m m_n) \)
Decoding is hard
Decoding is hard

- Very simple example

\[f_1 \quad f_2 \quad f_3 \quad f_4 \quad \ldots \quad f_m \]
Decoding is hard

- Very simple example
- Models: LM, Model 1 (1/1)
Decoding is hard

- Very simple example
- Models: LM, Model 1 (1/1)
- Search space: All possible orderings of $e_1 \ldots e_m$
Decoding is hard

• Very simple example

• Models: LM, Model 1 (1/1)

• Search space: All possible orderings of $e_1 \ldots m$

• Picked by the LM
Decoding is hard

- Very simple example
- Models: LM, Model 1 (1/1)
- Search space: All possible orderings of e₁...m
- Picked by the LM
- \(w(e₁ \rightarrow e₂) = p(e₂ | e₁) \)
Decoding is hard

- Very simple example
- Models: LM, Model 1 (1/1)
- Search space: All possible orderings of $e_1...m$
- Picked by the LM
- $w(e_1 \rightarrow e_2) = p(e_2 | e_1)$
- Look familiar?
Decoding is hard

- Very simple example
- Models: LM, Model 1 (1/1)
- Search space: All possible orderings of e₁...m
- Picked by the LM
- \(w(e₁ \rightarrow e₂) = p(e₂ | e₁) \)
- Look familiar?
- TSP - NP Complete!
Problem characteristics

- Clear-cut optimization problem
 - There is always one right answer
- Inherently Complex
 - Number of ways to order words (LM)
 - Number of ways to cover input words (TM)
- Harder than in SR:
 - No left to right input-output correspondence
Decoding Methods

- Stack-based Decoding
 - Most common
 - Almost all contemporary decoders are stack-based

- Greedy Decoding
 - Faster but more error-prone

- Optimal Decoding
 - Finds the optimal translation
 - Really Really Slow!
Stack-based Decoding

• Originally introduced by Jelinek in SR
• Stores partial translations *(hypotheses)* in a *stack*
• Builds new translations by extending existing hypotheses
• Optimal translation guaranteed if given unlimited stack size and search time
• *Note*: stack does not imply LIFO; actually a (priority) queue
Stack-based Decoding

Hypothesis Stack
(finite size and sorted by cost)
Stack-based Decoding

Hypothesis Stack
(finite size and sorted by cost)

Pop (1)
Stack-based Decoding

Hypothesis Stack
(finite size and sorted by cost)

Pop (1)

Extend by translating every possible word (2)
Stack-based Decoding

Hypothesis Stack (finite size and sorted by cost)

Pop (1)

Extend by translating every possible word (2)

Push (3)
Stack-based Decoding

Hypothesis Stack (finite size and sorted by cost)

1. Pop
2. Extend by translating every possible word
3. Push

Repeat (1)-(3) until a **complete** hypothesis is encountered
Heuristic function

- Hypothesis cost = cost of translation so far
- Problem: Shorter hypotheses will push longer ones out
- Solution: Use translation cost + future cost
- Future cost: What it would cost to complete an hypothesis
- A heuristic provides an estimate of the future cost
- No heuristic can be perfect (no monotonicity)
- Need to find another solution
Multi-stack Decoding

- Use multiple stacks
 - One for each subset of the input words (2^n)
 - One for each number of words covered (n)
- Extend the top hypothesis from each stack
- Competition is among similar hypotheses
Other Optimizations

• Beam-based Pruning
 • Relative threshold - prune if $p(h) < \alpha \cdot p(h_{\text{best}})$
 • Histogram - Only keep a certain number of hypotheses, prune the rest
 • Can accidentally prune out a good hypothesis

• Hypothesis Recombination
 • If similar(h_1, h_2) then keep only the cheaper one
 • Risk-free
Greedy Decoding

- Start with the word-for-word English gloss
- Iterate exhaustively over all alignments one simple operation away
 - Add, substitute, change order etc.
- Pick the one with the highest probability
- Commit the change
- Repeat until no improvement possible
Greedy Decoding

• Pros
 • Much much faster
 • Complexity only scales polynomially with sentence length

• Cons
 • Searches only a very small subspace
 • Cannot find best translation if far from gloss
Optimal Decoding

- Transform decoding problem into a TSP instance
 - Foreign words ~ Cities
 - Translations ~ Hotels in cities
 - Cost ~ Distance
- Solve TSP using Integer Programming (IP)
 - Cast tour selection as a constrained integer program
 - Can find tours of various lengths (n-best lists)
Optimal Decoding

• Pros
 • Fast decoder development
 • Optimal n-best lists
 • Extremely customizable

• Cons
 • Extremely slow!
 • Hard to integrate non-related information sources
Decoding Errors

- **Search Error**
 - \(\text{decode}(f) = e \), but \(\exists e' \) s.t. score\((e')\) > score\((e)\)
 - The right answer is in the space but we couldn’t find it
 - Hard to prove sub-optimal decoding

- **Model Error**
 - \(\text{correct}(f) \notin \text{Search space} \)
 - The right answer is not in the space because of imperfect models
Observations*

• $|\text{space}_{\text{greedy}}| << |\text{space}_{\text{stack}}|$ (hence the speed)

• $\text{space}_{\text{stack}} \subseteq \text{space}_{\text{optimal}}$

• $nSE_{\text{greedy}} >> nSE_{\text{stack}} >> nSE_{\text{optimal}} (=0)$

• $t_{\text{greedy}} < t_{\text{stack}} << < t_{\text{optimal}}$ (50 for $m=6$, 500 for $8!$)

• $nME >> 0$ for all, since Model 4 is deficient

All decoders are Model 4 and tested on the same set
Take Home Messages

• Optimal decoding is possible but highly impractical
• Optimized stack-based decoding provides good balance
• All modern decoders are basically the same (stack-based)
 • Differences in models, score and extension operations.
 Examples: Pharaoh, Rewrite
• Better translations will come from improving models
 (Hiero)