A Pipeline for Modeling Automated Scoring Using Python, R and Jupyter Notebooks

Nitin Madnani, Anastassia Loukina & Lei Chen
Machine Learning & Educational Assessment
A Pythonic Love Story

Nitin Madnani, Anastassia Loukina & Lei Chen
Educational Testing Service

• A non-profit educational organization founded in 1947, headquartered in Princeton, New Jersey (N ≈3500).

• Designs and administers global as well as domestic educational assessments (GRE®, TOEFL®, PRAXIS® etc.)

• Conducts and publishes extensive research on psychometrics, statistics, cognitive science, and computer science.\(^1\)

• **Mission**: To advance quality and equity in education by providing *fair* and *valid* assessments, research and related services.

\(^1\) http://search.ets.org/researcher/
Two Parts

• **Part 1**: What makes educational assessment a challenging application for machine learning?

• **Part 2**: How does Python help us address some of these challenges at ETS?
Educational Assessments
Educational Assessments

Classroom Quiz
Educational Assessments

- Classroom Quiz
- Homework
 - Assignment
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- K-12 Standardized Tests
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- Teacher Certification
- K-12 Standardized Tests
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- Teacher Certification
- Practice Tests
- K-12 Standardized Tests

Copyright © 2015 by Educational Testing Service. All rights reserved. ETS and the ETS logo are registered trademarks of Educational Testing Service (ETS). MEASURING THE POWER OF LEARNING is a trademark of ETS.
Educational Assessments

- Classroom Quiz
- TOEFL/IELTS
- Practice Tests
- Homework Assignment
- Teacher Certification
- MOOC Assignments
- K-12 Standardized Tests
Educational Assessments

- Classroom Quiz
- TOEFL/IELTS
- Practice Tests
- Homework Assignment
- Teacher Certification
- GRE
- MOOC Assignments
- K-12 Standardized Tests
- Teacher Certification
- Practice Tests
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- Teacher Certification
- TOEFL/IELTS
- Practice Tests
- GRE
- GMAT
- K-12 Standardized Tests

Copyright © 2015 by Educational Testing Service. All rights reserved. ETS and the ETS logo are registered trademarks of Educational Testing Service (ETS). MEASURING THE POWER OF LEARNING is a trademark of ETS. 30141
Educational Assessments

- Classroom Quiz
- TOEFL/IELTS
- Practice Tests
- Teacher Certification
- GRE
- GMAT
- Homework Assignment
- MOOC Assignments
- K-12 Standardized Tests
- GED
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- Practice Tests

- TOEFL/IELTS
- GRE
- GMAT
- GED
- Teacher Certification
- K-12 Standardized Tests
Educational Assessments

Classroom Quiz

Homework Assignment

MOOC Assignments

Practice Tests

TOEFL/IELTS

GRE

GMAT

GED

Teacher Certification

K-12 Standardized Tests

High Stakes
“High Stakes”

• A test with results that have **important**, **direct** consequences for the test-takers.

• A test-taker would want to **understand** what their score means and how it maps to what they did on the test.
Educational Assessments

- Classroom Quiz
- Homework Assignment
- MOOC Assignments
- Practice Tests

- TOEFL/IELTS
- GRE
- GMAT
- GED
- Teacher Certification
- K-12 Standardized Tests

High Stakes
Educational Assessments

Classroom Quiz
Homework Assignment
MOOC Assignments
Practice Tests

TOEFL/IELTS
GRE
GMAT
GED
Teacher Certification
K-12 Standardized Tests

High Stakes
The GRE

- Graduate Record Examination, designed and administered by ETS.

- Used by at least 3000 colleges and universities across the world for graduate school applications to MS, MBA & PhD programs.\[1\]

- ~575,000 test-takers from ~200 countries between July 2013 and June 2014 (50% women, 45% men). \[2\]

- Three sections:
 - Verbal Reasoning
 - Quantitative Reasoning
 - Analytical Writing

The GRE

- Graduate Record Examination, designed and administered by ETS.
- Used by at least 3000 colleges and universities across the world for graduate school applications to MS, MBA & PhD programs. [1]
- ~575,000 test-takers from ~200 countries between July 2013 and June 2014 (50% women, 45% men). [2]
- Three sections:
 - Verbal Reasoning
 - Quantitative Reasoning
 - Analytical Writing

“As people rely more and more on technology to solve problems, the ability of humans to think for themselves will surely deteriorate.”

Directions: Write a response in which you discuss the extent to which you agree or disagree with the statement and explain your reasoning for the position you take.

Score 6. Outstanding
- articulates a clear and insightful position
- develops the position fully
- well-focused, well-organized analysis
- conveys ideas fluently and precisely
- demonstrates superior facility with English

Score 1. Fundamentally Deficient
- provides little/no evidence of understanding
- disorganized or extremely brief
- severe problems with sentence structure
- pervasive errors in grammar
- incoherent and meaning not clear

https://www.ets.org/gre/revised_general/prepare/analytical_writing/issue/scoring_guide
Scoring essays

Given the stakes, our scoring methodology must maximize:

• **Accuracy**: how accurately does the assigned score measure the analytical skills of the test-taker?

• **Interpretability**: how easily can test-takers understand why they were assigned a particular score and what that score means?
Scoring essays

Given the stakes, our scoring methodology must maximize:

- **Accuracy**: how accurately does the assigned score measure the analytical skills of the test-taker?
- **Interpretability**: how easily can test-takers understand why they were assigned a particular score and what that score means?

It would also be nice to minimize:

- **Cost**: how efficiently can we score each test (how much money can we save the test-taker in fees)?
Scoring essays
Scoring essays

Option 1

- High Accuracy
- Medium Interpretability
- High Cost

Essay

Trained Human **Readers**

Scoring Guide
Scoring essays

Option 2

- Medium Accuracy
- (Choice of) High Interpretability
- Low Cost
Scoring essays

One Trained Human Reader

Human Score

Final score

As good as using two human readers[1].

E-rater

Automated Scoring System (Machine Learning)
E-rater

“Essay Rater”
Linear regression trained on older essays written to the same topic and scored by human readers.

Features
- errors in grammar (e.g., subject-verb agreement)
- usage errors (incorrect prepositions/articles)
- mechanics errors (capitalization, spelling)
- errors in style (repetitious word use)
- discourse structure (presence of a thesis statement, main points)
- vocabulary sophistication
- essay organization

Automated Scoring System (Machine Learning)
E-rater & Research

- E-rater still an active area of research at ETS
 - Design new features; examine their effect on performance, and whether they overlap with existing features.
 - Try more sophisticated machine learning models (higher accuracy worth lower interpretability?)
- Last year, 10 new e-rater features proposed just for GRE!
- GRE one of a dozen assessments, e-rater one of many automated scoring engines
- Research untenable for a large group (>15 scientists) without a standardized pipeline.
Ideal research pipeline

Need an end-to-end machine learning pipeline that can:

• Work on (almost) all platforms,
• Read features in any tabular format and clean it up,
• Efficiently apply filtering, scaling and transformations,
• Train any specified model with those features, and
• Generate a standardized, detailed report of performance on unseen essays.
Part 2
Python Pipeline

Input

Preprocess

Model

Evaluate

Report

final self-contained report
| Training Features (csv/tsv/xls) | Unseen Test Features (csv/tsv/xls) | Feature Definitions (json) | Model Name (str) |
1. Input

- Read files into data frames
- Check for missing feature columns, exclude others
- Filter out non-numeric and blank values
- Standardize essay ID and essay score column names

```
pandas
```
1. Input

- Read files into data frames
- Check for missing feature columns, exclude others
- Filter out non-numeric and blank values
- Standardize essay ID and essay score column names

pandas

Training Data Frame (Raw)
Unseen Test Features (csv/tsv/xls)
Feature Definitions (json)
Model Name (str)
Training Data Frame (Raw)

Test Data Frame (Raw)

Feature Definitions (json)

Model Name (str)
2. Preprocess

- Filter out user-flagged rows, if so specified
- Remove feature outliers & “intelligently” apply feature transformations (\texttt{log, inv, sqrt, etc.}), if available
- Standardize all features (center and scale)

\texttt{numpy + pandas}
2. Preprocess

- Filter out user-flagged rows, if so specified
- Remove feature outliers & “intelligently” apply feature transformations (log, inv, sqrt, etc.), if available
- Standardize all features (center and scale)

Model Name (str)

Feature Definitions (json)

Training Data Frame (Raw)

Test Data Frame (Raw)

Training Data Frame (Processed)

Test Data Frame (Processed)

numpy + pandas
Training Data Frame (Processed)

Test Data Frame (Processed)

Feature Definitions (json)

Model Name (str)
3. Model

- Train regression/classification model via SKLL API or R
- Grid-search using a task-appropriate objective
- Serializes model to disk (using joblib)
3. Model

- Train regression/classification model via SKLL API or R
- Grid-search using a task-appropriate objective
- Serializes model to disk (using joblib)

SKLL (pronounced “skull”) provides an API and command-line utilities to make it much simpler to run common scikit-learn experiments with pre-generated features.

(Presented by @dsblanch at PyData 2013 & 2014)

https://github.com/EducationalTestingService/skll
3. Model

- Train regression/classification model via SKLL API or R
- Grid-search using a task-appropriate objective
- Serializes model to disk (using joblib)

Model Name (str)
Feature Definitions (json)
Test Data Frame (Processed)

Training Data Frame (Processed)

R + skll
3. Model

- Train regression/classification model via SKLL API or R
- Grid-search using a task-appropriate objective
- Serializes model to disk (using joblib)

R + **skll**

Serialized model
4. Evaluate

- Use serialized model to compute test set predictions
- Trim and re-scale predictions to match training data
- Compute a set of standard evaluation metrics by comparing predictions to test set human scores

skll + pandas
4. Evaluate

- Use serialized model to compute test set predictions
- Trim and re-scale predictions to match training data
- Compute a set of standard evaluation metrics by comparing predictions to test set human scores

```
skll + pandas
```

- Test Data Predictions
- Evaluation Statistics
5. Report

- Determine what report sections should be included
- Merge pre-existing section templates (.ipynb files)
- Dynamically Run final .ipynb file (via `ExecutePreprocessor` and environment variables)
- Convert report to HTML using `HTMLExporter`

```
jupyter + seaborn + pandas
```
5. Report

- Determine what report sections should be included
- Merge pre-existing section templates (.ipynb files)
- Dynamically Run final .ipynb file (via `ExecutePreprocessor` and environment variables)
- Convert report to HTML using `HTMLExporter`

jupyter + seaborn + pandas
Demo
Summary

• Machine learning in high-stakes educational assessment requires additional number crunching to verify accuracy and interpretability.

• Need a pipeline to compare a large number of research experiments using a standardized, easy-to-read report.

• The scientific Python stack makes it super easy to implement all stages of the pipeline!

• In progress
 • Release under open-source license (2016 release)
 • A CherryPy/JS web-app to allow wider reach
Questions?

https://github.com/EducationalTestingService

https://github.com/desilinguist

@haikuman