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ABSTRACT

Many applications designed to assess and improve oral read-
ing fluency use automated speech recognition (ASR) to pro-
vide feedback to students, teachers, and parents. Most such
applications rely on a distributed architecture with the speech
recognition component located in the cloud. For interactive
applications, this approach requires a reliable Internet con-
nection that may not always be available. We investigate
whether on-device ASR can be used for a virtual reading com-
panion using recordings obtained from children both in a con-
trolled environment and in the field. Our limited evaluation
makes us cautiously optimistic about the feasibility of using
on-device ASR for our application.

Index Terms— human-computer interaction, embedded
recognizers, reading fluency assessment, child speech

1. INTRODUCTION

According to a 2015 report, 31% of U.S. 4th graders read
below the Basic level.1 In a typical upper-elementary curricu-
lum, students are assumed to be sufficiently fluent indepen-
dent readers to handle reading assignments in the science and
social science classes. Thus, students who struggle to read
start falling behind not only in English but across the curricu-
lum. Moving from learning to read to reading to learn is
one of the critical junctures in literacy development; it is im-
portant to create scalable methods for supporting struggling
readers in this process.

Speech technologies offer rich opportunities for support-
ing literacy development. In previous work, we describe a
virtual reading companion which uses the recording of an ex-
pert adult reader as a reading partner that takes turns reading a
book with the child and employs speech processing technolo-
gies to process child’s speech [1, 2]. During the narrator’s
turns, the child can follow along on the screen or just listen.
When it is the child’s turn to read, an automated speech anal-
ysis system captures and processes the child’s oral reading in

1https://www.nationsreportcard.gov/reading\
_math\_2015/#reading/acl?grade=4

order to adjust the system’s behavior (the narrator might read
more to a weaker reader), provide feedback, or track improve-
ment in reading skill. The application is intended to be used
flexibly in both in-school and out-of-school scenarios, such as
after-school programs, summer camps, or at home.

While automated systems have successfully been used for
assessment of oral reading on short passages [3, 4], they pri-
marily relied on distributed architecture with speech recogni-
tion components located in the cloud (although see [5]). In the
context of our application, a reliable network connection may
not always be available. According to the 2017 EdTech Out-
look Report [6], while 94% of schools are connected to the
Internet, only 22% of them have enough bandwidth to handle
the streaming demands of media-rich applications. Further-
more, individual users might rely on cellular data plans and
transmitting large amount of audio data might be financially
prohibitive.

In addition to addressing the bandwidth limitation, [7] list
other advantages of using on-device ASR. These include a
simpler architecture on the server-side, a lower energy foot-
print, mitigated privacy concerns, enhanced options for voice
activity detection, and bandwidth availability for other tasks
that require network communication.

In this paper, we evaluate whether we can obtain reliable
estimates of student reading accuracy from the audio record-
ings from our application using an on-device ASR system. An
additional practical consideration is that the on-device ASR
needs to be integrated into the application for usability testing
long before sufficiently many children read the whole book
to generate enough in-domain data for training the system.
Therefore, we evaluate whether it is possible to achieve rea-
sonable performance with an ASR system trained entirely on
pre-existing data external to our application.

To assess the effect of data quality, we evaluate on sev-
eral corpora: (1) high-quality recordings of adult speech; (2)
recordings of fluent children collected in a quiet office; and
(3) recordings collected under conditions more similar to the
envisioned use — with struggling or moderately proficient
readers in after-school programs.
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2. RELATED WORK

Many existing commercial and research applications use
ASR and other speech processing technologies to assess oral
reading fluency and assist with its development. Reviews
of earlier systems can be found in [8, 9, 4] among many
others; [10] provide an overview of some of more recent
developments in the area of technology-based literacy in-
struction. VersaReader [4] and Project LISTEN [3] are two
of the most mature systems in this area. While their find-
ings show that this approach is very effective and results in
measurements that show high agreement with those assigned
by human raters, the majority of such applications rely on a
client-server architecture with the recording sent to a server
for recognition and processing.

The feasibility of on-device ASR has been demonstrated
in several papers using both Gaussian Mixture based mod-
els [11, 12, 13] and DNN-based models [14, 15, 16]. To our
knowledge, the only reading application that uses on-device
ASR is the self-administered app Moby.Read [5]. They report
that the system achieves high agreement in terms of words
correct per minute but do not provide any estimates of ASR
performance. The app asks students to read a word-list and
four short passages which means that the total size of the
vocabulary/language model could be relatively small. In our
case, the students read much longer texts. The challenges of
extended reading stem not just from the duration of the audio
signal to be processed. While it might be possible to design a
rotating schedule for users or turn the noisy air-conditioner off
during a one-time test that takes only a few minutes per stu-
dent, the context of extended reading sessions over a period of
several weeks makes consistently controlling the environment
very difficult. Thus, there is a high likelihood of background
noise, e.g. other children possibly reading the same text aloud
at the same time.

3. DESCRIPTION OF THE DATA

We evaluated our on-device ASR system on three corpora.
In all cases, the speakers read excerpts from the same book
but the recording conditions and speaker characteristics var-
ied across the three corpora. We selected Harry Potter and the
Sorcerer’s Stone (HP1) by J. K. Rowling as the book to be
read. For the adult reader, we use the recorded narration by
Jim Dale [17]. All participants in the two user studies (§3.2
and §3.3) were recruited following well-established IRB pro-
cedures.

3.1. Narrator corpus

We extracted 61 overlapping passages from the first chapter of
the audiobook, which varied in length between 151 and 436
words. These were the same passages as those in the field data

described in §3.3. The extracts were recognized automatically
and the ASR hypothesis was compared to the original book.

We use this corpus as a sanity check to make sure that
no errors were introduced during language model training
and ASR configuration, and that there are no consistent data-
independent patterns. The ASR system should have very low
WER on this data since our system uses LibriSpeech models
(see §4.1) that are a good fit for the male narrator whose read-
ing is very well enunciated and free of disfluencies or any
off-task speech; these professional recordings are also free of
background noise.

3.2. Pilot corpus

The second corpus contains recordings that were collected
early in the project with a goal of evaluating various system
components. To that end, the task was not interactive read-
ing but just plain reading of a few passages [1, 2]. It includes
63 recordings (2.2 hours) of 22 children reading 3 texts from
HP1. At the time of the recording (April 2017), all children
attended grades 2-4 (6-8 children per grade, 12 girls and 10
boys). All children read three passages from Chapter 1 (246,
226 and 306 words). The texts were presented on a laptop
screen and captured via a Cyber Acoustics Pro Grade Stereo
Headset microphone. To simulate classroom conditions, the
recordings were conducted in an office with 2-3 children read-
ing simultaneously.

While the age of the children matched that of the target
population, the children were selected via a convenience sam-
ple and were very fluent and accurate readers in comparison
to their peers. The experiment was set up in a way that chil-
dren could not proceed to the next text until 3 minutes from
the start of the recording. For this evaluation, we segmented
the audio to only use the portion where the child read the text.

This corpus allows us to evaluate the system performance
on children where we expect a mismatch in terms of acoustic
models under otherwise favorable circumstances: fluent read-
ers and reasonably quiet recording conditions.

3.3. Field corpus

The data for this study was collected in Summer-Fall 2017
using a research prototype of the actual interactive reading
system. The first few chapters of the book were split into pas-
sages of varying length. The system displayed the book and
alternated between playing the recorded narration for some
passages and prompting the user to read aloud other passages.
The system was deployed on laptops and the reading aloud
was captured via the same headsets as for Pilot corpus.

The data collection was conducted at several after-school
programs and lasted 5 days at each site. 36 children partici-
pated in the study (23 boys, 13 girls). Average age at the time
of the recording was 9;2 (min 7;0, max 12;2).

The first session was used to administer various tests.
During the remaining four days, the children interacted with
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the program for 20 minutes a day. The total number of turns
per session varied across children. Furthermore, not all chil-
dren completed all four sessions.

We excluded recordings shorter than 30s and another 22
with off-task speech in the middle of the reading. The final
corpus consists of 395 recorded turns or 14.3 hours of record-
ings.

4. ASR EVALUATION

4.1. Description of on-device ASR

We considered various options for on-device ASR, either
open-sourced or commercial systems offering free trials.
Many of the ASR APIs designed for use on portable devices
such as the iOS & Android ones, rely on cloud-based pro-
cessing and thus did not meet our requirement for offline
use. Only two system met this requirement: PocketSphinx
[11] and KeenASR which uses Kaldi [18]. We selected Kaldi-
based KeenASR for this first round of experiments since we
used Kaldi in previous experiments with server-side ASR [2].

We used the freely available trial version of the KeenASR
SDK for iOS2 and created a simple app that uses the SDK to
stream an audio file through it and produce the 1-best ASR
hypothesis. The app was written in Swift, cross-compiled us-
ing Apple XCode v9.2 on a 15-inch MacBook Pro, and then
run on a 10.5 inch iPad Pro. Using the app, we captured the 1-
best ASR hypotheses generated for each file in our corpora as
well as its processing time. The decoding graph was compiled
on the iPad Pro once — before any files were processed —
and, therefore, graph compilation is excluded from our tim-
ing estimates.

We used acoustic models supplied with the trial version of
KeenASR. These are publicly available librispeech-nnet2-en-
us models trained on the LibriSpeech corpus [19]. We used
custom language model trained on the book text following
the same procedure as described in [2]. Separate models were
trained for each chapter. As an example, the language model
(ARPA) for chapter 1 contained 1,172 unigrams, 3,590 bi-
grams and 4,429 trigrams. We also added phonemic transcrip-
tions for all OOV words to the lexicon.

4.2. Identification of off-task speech

The recordings in Pilot and Field corpora contained a certain
amount of off-task speech. Furthermore, as showed in [2],
background speech during silences can often be picked by
ASR and recognized as part of the child’s response - a phe-
nomenon that was termed ‘ghost’ off-task speech.

Given our constrained language models, it is not mean-
ingful to compute performance estimates on these parts of the

2https://keenresearch.com/keenasr-docs/
keenasr-ios-introduction.html

recordings. To identify any instances of real or ‘ghost’ off-
task speech either before or after the on-task reading, we used
the algorithm described in [2, 20] where the ASR hypothesis
is aligned back to the expected text in order to identify the
first and last word in the hypotheses.

For reference transcriptions, the transcribers were asked
to mark any instances of off-task speech. We used these anno-
tations to filter out only the relevant portions of the transcript.

4.3. Evaluation metrics

We report three evaluation metrics.
First, for comparison with other studies, we report ASR

Word Error Rate (WER), the standard measure of ASR per-
formance, computed by comparing ASR hypothesis with hu-
man transcriptions provided by a professional transcription
agency. We used NIST procedure to compute WER.

The second evaluation focuses on whether the ASR per-
formance is sufficient to obtain reliable estimates of student
reading skills, the main figure of interest for our application.
Reading accuracy is computed as the total number of words
that have been read correctly divided by the total number of
words in the prompt. This measure is sensitive to deletions
and substitutions but ignores insertions. We compute student
accuracy twice, first using human transcriptions and then us-
ing ASR hypothesis. Since ASR-based estimates might be
consistently lower or higher than those based on human tran-
scription, in this study we focus on whether there is a linear
relationship between the two estimates and report the corre-
lation.

Finally, we also consider processing time (xRT): while
this parameter is not directly related to measuring reading ac-
curacy, it has important practical implications for any modern
application. We compute decoding speed as processing time
divided by the duration of the audio time.

5. RESULTS

5.1. ASR Word Error Rate

The recognizer performance on the Narrator corpus was
very close to human transcribers with a mean WER of 0.3%
(WER ranged from 0% to 3.6%). Thus the system performed
as expected when evaluated on quiet recordings from an
accurate adult reader.

For the Pilot corpus, the recognizer failed to produce a
hypothesis for 1 out of 63 responses, probably because dur-
ing the reading the child moved very close to the microphone
leading to clipping. The average ASR WER for on-task part
of the recording was 9.3% (WER varied from 2.9% to 25%).
This is an encouraging result given the mis-match between
the adult acoustic model and these young readers. In fact,
the performance was comparable to that of an out-of-the box
server-based system with the acoustic model optimized for
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Table 1. Distribution of student reading accuracy (%) for Pilot and Field corpora, and correlations (Spearman’s ρ and Pearson’s
r) between transcription-based and ASR-based estimates of student reading accuracy at passage, session, and speaker level.
Note that for the Pilot corpus, session-level and speaker-level estimates are the same since all recordings were collected in one
day.

Corpus Level N Accuracy (%) Correlation

min. 25% 50% 75% max. mean std. ρ r
Pilot Passage 62 87.5 96.8 98.2 99.3 100 97.7 2.3 .46 .51
Pilot Session 22 93.9 96.6 98.1 98.8 99.5 97.7 1.6 .74 .72
Field Passage 304 0 45.2 95.0 98.3 100 73.0 36.3 .69 .83
Field Session 99 0 36.1 91.2 97.5 99.8 67.7 36.7 .76 .82
Field Speaker 353 0 43.9 72.4 95.9 99.6 64.3 35.7 .85 .92

young but non-native speakers. The latter server-based sys-
tem achieved a WER of 10% [2]. The performance is also in
line with other state of the art systems: [21] reported a WER of
7% for read speech from young non-native English language
learners; reviewing child ASR, [22] cite a WER of 8-12% for
different systems.

Not all recordings in the Field corpus could be processed
since the trial version of the KeenASR SDK limits file du-
ration to 200s. Out of the 395 recordings we selected for
analysis, 343 recordings were below this limit. Out of these
343 recordings, the ASR produced no hypothesis for 28 files
(8%). For another 11 files (3%), the hypothesis consisted of 1
word. Further analysis showed that for 3 of these 39 (11 + 28)
files, human transcriptions were also empty. For the remain-
ing 36 files, ASR failure was likely caused by audio quality
issues. Therefore, our analysis is done on 304 recordings (9.5
hours) where we were able to obtain a hypothesis. We used
the same procedure as before to identify on-task speech and
computed the WER between automatically identified on-task
speech and parts of transcription marked as on-task. The dis-
tribution of WER for on-task speech was very skewed and var-
ied from 1.8% to substantially above 100% 4 with a median
value at 33.4%, substantially larger than for the Pilot corpus.
To make sure that the WER results were not an artifact of the
on-task detection algorithm, we also computed WER using the
full transcriptions and hypotheses. This led to an increase in
median WER to 36.1%. This is consistent with our expectation
that given the constrained language model, ASR performance
on off-task speech is likely to have high WER.

5.2. Decoding time

The decoding time for all corpora was consistently faster than
the duration of the recording. The decoding time was the
shortest and most consistent for the narrator with average xRT
= 0.17 (SD = 0.009, max 0.18). For the Pilot corpus, the av-
erage xRT was 0.23. The decoding was the slowest for the

3All recordings from one of the female speakers were excluded as a result
of restriction on file duration.

4For our data, WER values > 100% usually indicate that the ASR hypoth-
esis was longer than the human transcription.

recordings in the Field corpus with average xRT=0.5. The
highest xRT across the three corpora was 1.45.

5.3. Reliability of reading accuracy estimates

We considered several accuracy estimates: (1) accuracy es-
timates for individual passages; (2) accuracy estimate for all
passages read during a single session; and (3) accuracy esti-
mate for all passages read by a given speaker during the entire
data collection. Note that for the Pilot corpus, all recordings
were collected in one day and, therefore, (2) and (3) are the
same.

Table 1 shows the distribution of reading accuracy val-
ues computed based on the transcription and the correlations
between the transcription-based and ASR-based accuracy es-
timates. We report both parametric (Pearson’s r) and non-
parametric correlations (Spearman’s ρ) because in some cases
the distributions are very skewed.

All estimates were consistently less reliable for the Pilot
corpus than for the Field corpus. This may appear surpris-
ing given that the WER on Pilot corpus was much lower than
for the Field corpus. Table 1 shows that the variation in stu-
dent accuracy for the Field corpus is also much larger than
for the Pilot corpus where all speakers were very accurate
readers. ASR performance is clearly insufficient to make a
fine-grained distinction between the highly proficient readers
in the Pilot corpus. It is, however, useful in making coarser
distinction between the greater range of abilities in the Field
corpus.

We also observe that the accuracy estimates get more pre-
cise as several passages from the same speaker are aggregated
to obtain a single estimate. Our ASR-based speaker-level
estimates for the Field corpus are fairly precise with r=0.9
(ρ=0.84).

6. DISCUSSION

Our first observation is that on-device ASR is certainly a vi-
able option for applications such as ours: its performance on
high-quality recordings (Pilot corpus) is consistent with per-
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formance reported for server-based ASR systems, even with
mismatched acoustic models and in the absence of any adap-
tation for the data. The decoding speed is also generally quite
fast with an average xRT of 0.5 for the Field corpus. We note,
however, that the recordings used in this study were not col-
lected using actual mobile devices which could lead to differ-
ent performance estimates.

We also observed an increase in ASR WER when the sys-
tem was evaluated on recordings in the Field corpus. Since
these recordings were meant to be collected under authentic
usage conditions, we only provided general guidelines to the
sites (e.g. “try to place children as far from each other as pos-
sible” or “try to make sure the AC is off”) but did not discard
any sites even if it was clear that the acoustic conditions were
less than perfect. As a result, many recordings in this corpus
contained noise such as the speech of other students or from
mechanical equipment.

To separate the effect of background noise, we rated the
quality of all recordings on a scale of 1 to 3, where ‘1’ corre-
sponds to ”I can barely understand hear or identify the main
speaker because of noise”, and ‘3’ corresponds to ‘The main
speaker is clearly audible”. Two annotators took part in the
annotation process with about 50% of recordings annotated
by both annotators. The inter-rater agreement for double-
annotated recordings was quadratically weighted κ=0.70.
Where available, we used the average of the ratings between
the two annotators. We classified recordings with an average
score of 1 as ‘bad’ (29.3%) and those with 2.5 or higher
as ’good’ (30.9%). The remaining 39.8% were considered
‘noisy’.

Transcription-based estimates of reading accuracy were
generally low for ‘bad’ recordings (median 21% vs. 95%
for the whole corpus), partially due to the fact that the hu-
man transcriptions were not reliable because of background
noise. Background noise was also a major factor in ASR
performance: median WER was larger than 100% for ‘bad’
recordings, 28.5% for ‘noisy’ recordings, and 14.6% for
‘good’ recordings.

We observed that even for ‘good’ recordings, the WER was
higher than for the Pilot corpus. We further reviewed some of
the responses with particularly high WER and found that, in
such cases, the student’s reading deviated from the text in a
non-trivial way: for example, the student switched between
reading aloud and silent reading resulting in the recordings of
only some parts of the text with long pauses between the ut-
terances. During the pauses, the microphone picked up audio
signals from the other children reading in the background and
this was, in turn, recognized by the ASR system.

These problems are, of course, not restricted to the use
of on-device ASR considered in this paper. For future work,
we envision a number of technical approaches that could al-
leviate these problems, e.g. using noise-robust acoustic mod-
els, using other signals from the device like the front-facing
camera to help with Voice Activity Detection, using more

complex algorithms for the detection of on-task speech, and
leveraging multiple microphones on the device for directional
audio capture. Generally speaking, it is evident that a non-
negligible percentage of recordings in authentic classroom
conditions would not be suitable for obtaining reliable esti-
mates of child’s reading accuracy at the passage level.

At the same time, despite background noise and other un-
usual properties of the individual passages, our aggregated es-
timates of student accuracy remain very high. This suggests
that noise and various other problems that adversely impact
audio quality are distributed reasonably randomly across lo-
cations, sessions, and individuals; namely, it was not the case
that specific locations consistently yielded low quality data.
This is an encouraging result in terms of the general feasibil-
ity of using ASR-based technology for this application.

In this paper, we focused on a limited use case for the
interactive reading app: providing a global estimate of the
accuracy rather than fine-grained feedback, e.g., miscue anal-
ysis. Such feedback would require reliable measurements at
the passage level and, therefore, additional filtering to exclude
responses where such measurements are not likely to be reli-
able.

7. CONCLUSION

We evaluated an off-the-shelf, on-device ASR toolkit on field
data collected from an interactive reading application under
realistic classroom conditions. The results of our analysis
make us cautiously optimistic about the feasibility of using
on-device ASR for such an application. Using our ASR set-up
as an example, we also showed that while background noise
and off-task behavior lead to deterioration in performance in
comparison with clean recordings, aggregating measurements
across multiple responses from the same students can likely
mitigate the issue, at least for coarse-grained accuracy esti-
mates. For more fine-grained feedback at the passage level,
additional filtering modules will be required at the very least.
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